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Problems with Non-smooth Inequality
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Abstract We consider the problem of minimization of a convex function on a
simple set with convex non-smooth inequality constraint and describe first-order
methods to solve such problems in different situations: smooth or non-smooth
objective function; convex or strongly convex objective and constraint; deterministic
or randomized information about the objective and constraint. Described methods
are based on Mirror Descent algorithm and switching subgradient scheme. One
of our focus is to propose, for the listed different settings, a Mirror Descent with
adaptive stepsizes and adaptive stopping rule. We also construct Mirror Descent
for problems with objective function, which is not Lipschitz, e.g., is a quadratic
function. Besides that, we address the question of recovering the dual solution in
the considered problem.
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8.1 Introduction

We consider the problem of minimization of a convex function on a simple set with
convex non-smooth inequality constraint and describe first-order methods to solve
such problems in different situations: smooth or non-smooth objective function;
convex or strongly convex objective and constraint; deterministic or randomized
information about the objective and constraint. The reason for considering first-
order methods is potential large (more than 105) number of decision variables.

Because of the non-smoothness presented in the problem, we consider sub-
gradient methods. These methods have a long history starting with the method
for deterministic unconstrained problems and Euclidean setting in [28] and the
generalization for constrained problems in [25], where the idea of steps switching
between the direction of subgradient of the objective and the direction of subgradient
of the constraint was suggested. Non-Euclidean extension, usually referred to as
Mirror Descent, originated in [17, 19] and later analyzed in [5]. An extension
for constrained problems was proposed in [19], see also recent version in [6].
Mirror Descent for unconstrained stochastic optimization problems was introduced
in [16], see also [12, 15], and extended for stochastic optimization problems
with expectation constraints in [14]. To prove faster convergence rate of Mirror
Descent for strongly convex objective in unconstrained case, the restart technique
[18–20] was used in [12]. An alternative approach for strongly convex stochastic
optimization problems with strongly convex expectation constraints is used in [14].

Usually, the stepsize and stopping rule for Mirror Descent requires to know
the Lipschitz constant of the objective function and constraint, if any. Adaptive
stepsizes, which do not require this information, are considered in [7] for problems
without inequality constraints, and in [6] for constrained problems. Nevertheless,
the stopping criterion, expressed in the number of steps, still requires knowledge of
Lipschitz constants. One of our focus in this chapter is to propose, for constrained
problems, a Mirror Descent with adaptive stepsizes and adaptive stopping rule.
We also adopt the ideas of [21, 24] to construct Mirror Descent for problems
with objective function, which is not Lipschitz, e.g., a quadratic function. Another
important issue, we address, is recovering the dual solution of the considered
problem, which was considered in different contexts in [1, 4, 23].

Formally speaking, we consider the following convex constrained minimization
problem

min{f (x) : x ∈ X ⊂ E, g(x) ≤ 0}, (8.1)
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where X is a convex closed subset of a finite-dimensional real vector space E, f :
X → R, g : E → R are convex functions.

We assume g to be a non-smooth Lipschitz-continuous function and the problem
(8.1) to be regular. The last means that there exists a point x̄ in relative interior of
the set X, such that g(x̄) < 0.

Note that, despite problem (8.1) contains only one inequality constraint, consid-
ered algorithms allow to solve more general problems with a number of constraints
given as {gi(x) ≤ 0, i = 1, . . . ,m}. The reason is that these constraints can be
aggregated and represented as an equivalent constraint given by {g(x) ≤ 0}, where
g(x) = maxi=1,...,m gi(x).

The the rest of the chapter is divided in three parts. In Sect. 8.2, we describe
some basic facts about Mirror Descent, namely, we define the notion of proximal
setup, the Mirror Descent step, and provide the main lemma about the progress
on each iteration of this method. Section 8.3 is devoted to deterministic constrained
problems, among which we consider convex non-smooth problems, strongly convex
non-smooth problems and convex problems with smooth objective. The last,
Sect. 8.4, considers randomized setting with available stochastic subgradients for
the objective and constraint and possibility to calculate the constraint function. We
consider methods for convex and strongly convex problems and provide complexity
guarantees in terms of expectation of the objective residual and constraint infeasi-
bility, as long as in terms of large deviation probability for these two quantities.

Notation Given a subset I of natural numbers, we denote |I | the number of its
elements.

8.2 Mirror Descent Basics

We consider algorithms, which are based on Mirror Descent method. Thus, we start
with the description of proximal setup and basic properties of Mirror Descent step.
Let E be a finite-dimensional real vector space and E∗ be its dual. We denote the
value of a linear function g ∈ E∗ at x ∈ E by 〈g, x〉. Let ‖ · ‖E be some norm on E,
‖ · ‖E,∗ be its dual, defined by ‖g‖E,∗ = max

x

{〈g, x〉, ‖x‖E ≤ 1
}
. We use ∇f (x)

to denote any subgradient of a function f at a point x ∈ domf .
We choose a prox-function d(x), which is continuous, convex on X and

1. admits a continuous in x ∈ X0 selection of subgradients ∇d(x), where X0 ⊆ X

is the set of all x, where ∇d(x) exists;
2. d(x) is 1-strongly convex on X with respect to ‖ ·‖E , i.e., for any x ∈ X0, y ∈ X

d(y) − d(x) − 〈∇d(x), y − x〉 ≥ 1
2‖y − x‖2E .

Without loss of generality, we assume that min
x∈X

d(x) = 0.
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We define also the corresponding Bregman divergence V [z](x) = d(x)−d(z)−
〈∇d(z), x − z〉, x ∈ X, z ∈ X0. Standard proximal setups, i.e., Euclidean, entropy,
�1/�2, simplex, nuclear norm, spectahedron can be found in [8].

Given a vector x ∈ X0, and a vectorp ∈ E∗, theMirror Descent step is defined as

x+ = Mirr[x](p) := argmin
u∈X

{〈p, u〉 + V [x](u)
}

= argmin
u∈X

{〈p, u〉 + d(u) − 〈∇d(x), u〉}. (8.2)

We make the simplicity assumption, which means that Mirr[x](p) is easily com-
putable. The following lemma [7] describes the main property of theMirror Descent
step. We prove it here for the reader convenience and to make the chapter self-
contained.

Lemma 1 Let f be some convex function over a set X, h > 0 be a stepsize, x ∈ X0.
Let the point x+ be defined by x+ = Mirr[x](h · (∇f (x) + Δ)), where Δ ∈ E∗.
Then, for any u ∈ X,

h · (f (x) − f (u) + 〈Δ, x − u〉) ≤ h · 〈∇f (x) + Δ, x − u〉

≤ h2

2
‖∇f (x) + Δ‖2E,∗ + V [x](u) − V [x+](u).

(8.3)

Proof By optimality condition in (8.2), we have that there exists a subgradient
∇d(x+), such that, for all u ∈ X,

〈h · (∇f (x) + Δ) + ∇d(x+) − ∇d(x), u − x+〉 ≥ 0.

Hence, for all u ∈ X,

〈h · (∇f (x) + Δ), x − u〉 (8.4)

≤ 〈h · (∇f (x) + Δ), x − x+〉 + 〈∇d(x+) − ∇d(x), u − x+〉
= 〈h · (∇f (x) + Δ), x − x+〉 + (d(u) − d(x) − 〈∇d(x), u − x〉)

− (d(u) − d(x+) − 〈∇d(x+), u − x+〉)
− (d(x+) − d(x) − 〈∇d(x), x+ − x〉)

≤ 〈h · (∇f (x) + Δ), x − x+〉 + V [x](u) − V [x+](u) − 1

2
‖x+ − x‖2E

≤ V [x](u) − V [x+](u) + h2

2
‖(∇f (x) + Δ)‖2E,∗,
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where we used the fact that, for any g ∈ E∗,

max
y∈E

〈g, y〉 − 1

2
‖y‖2E = 1

2
‖g‖2E,∗.

By convexity of f , we obtain the left inequality in (8.3). �

8.3 Deterministic Constrained Problems

In this section, we consider problem (8.1) in two different settings, namely, non-
smooth Lipschitz-continuous objective function f and general objective function
f , which is not necessarily Lipschitz-continuous, e.g., a quadratic function. In both
cases, we assume that g is non-smooth and is Lipschitz-continuous

|g(x) − g(y)| ≤ Mg‖x − y‖E, x, y ∈ X. (8.5)

Let x∗ be a solution to (8.1). We say that a point x̃ ∈ X is an ε-solution to (8.1) if

f (x̃) − f (x∗) ≤ ε, g(x̃) ≤ ε. (8.6)

The methods we describe are based on the of Polyak’s switching subgradient
method [25] for constrained convex problems, also analyzed in [21], and Mirror
Descent method originated in [19]; see also [7].

8.3.1 Convex Non-smooth Objective Function

In this subsection, we assume that f is a non-smooth Lipschitz-continuous function

|f (x) − f (y)| ≤ Mf ‖x − y‖E, x, y ∈ X. (8.7)

Let x∗ be a solution to (8.1) and assume that we know a constant Θ0 > 0 such that

d(x∗) ≤ Θ2
0 . (8.8)

For example, if X is a compact set, one can choose Θ2
0 = maxx∈X d(x). We further

develop line of research [1, 4], but we should also mention close works [6, 23].
In comparison to known algorithms in the literature, the main advantage of our
method for solving (8.1) is that the stopping criterion does not require the knowledge
of constants Mf ,Mg , and, in this sense, the method is adaptive. Mirror Descent
with stepsizes not requiring knowledge of Lipschitz constants can be found, e.g., in
[7] for problems without inequality constraints, and, for constrained problems, in
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Algorithm 1 Adaptive mirror descent (non-smooth objective)

Input: accuracy ε > 0; Θ0 s.t. d(x∗) ≤ Θ2
0 .

1: x0 = argmin
x∈X

d(x).

2: Initialize the set I as empty set.
3: Set k = 0.
4: repeat
5: if g(xk) ≤ ε then
6: Mk = ‖∇f (xk)‖E,∗,
7: hk = ε

M2
k

8: xk+1 = Mirr[xk ](hk∇f (xk)) (“productive step”)
9: Add k to I .
10: else
11: Mk = ‖∇g(xk)‖E,∗
12: hk = ε

M2
k

13: xk+1 = Mirr[xk ](hk∇g(xk)) (“non-productive step”)
14: end if
15: Set k = k + 1.

16: until
k−1∑

j=0

1
M2

j

≥ 2Θ2
0

ε2

Output: x̄k :=
∑

i∈I

hi x
i

∑

i∈I

hi

[6].The algorithm is similar to the one in [2], but, for the sake of consistency with
other parts of the chapter, we use slightly different proof.

Theorem 1 Assume that inequalities (8.5) and (8.7) hold and a known constant
Θ0 > 0 is such that d(x∗) ≤ Θ2

0 . Then, Algorithm 1 stops after not more than

k =
⌈
2max{M2

f ,M2
g }Θ2

0

ε2

⌉

(8.9)

iterations and x̄k is an ε-solution to (8.1) in the sense of (8.6).

Proof First, let us prove that the inequality in the stopping criterion holds for k

defined in (8.9). By (8.5) and (8.7), we have that, for any i ∈ {0, . . . , k − 1}, Mi ≤
max{Mf ,Mg}. Hence, by (8.9),

k−1∑

j=0

1
M2

j

≥ k

max{M2
f ,M2

g } ≥ 2Θ2
0

ε2
.

Denote [k] = {i ∈ {0, . . . , k − 1}}, J = [k] \ I . From Lemma 1 with Δ = 0, we
have, for all i ∈ I and all u ∈ X,

hi · (f (xi) − f (u)
) ≤ h2i

2
‖∇f (xi)‖2E,∗ + V [xi](u) − V [xi+1](u)
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and, for all i ∈ J and all u ∈ X,

hi · (g(xi) − g(u)
) ≤ h2i

2
‖∇g(xi)‖2E,∗ + V [xi](u) − V [xi+1](u).

Summing up these inequalities for i from 0 to k − 1, using the definition of hi ,
i ∈ {0, . . . , k − 1}, and taking u = x∗, we obtain

∑

i∈I

hi

(
f (xi) − f (x∗)

) +
∑

i∈J

hi

(
g(xi) − g(x∗)

)

≤
∑

i∈I

h2i M
2
i

2
+

∑

i∈J

h2i M
2
i

2
+

∑

i∈[k]

(
V [xi](x∗) − V [xi+1](x∗)

)

≤ ε

2

∑

i∈[k]
hi + Θ2

0 . (8.10)

We also used that, by definition of x0 and (8.8),

V [x0](x∗) = d(x∗) − d(x0) − 〈∇d(x0), x∗ − x0〉 ≤ d(x∗) ≤ Θ2
0 .

Since, for i ∈ J , g(xi) − g(x∗) ≥ g(xi) > ε, by convexity of f and the definition
of x̄k, we have

(
∑

i∈I

hi

)
(
f (x̄k) − f (x∗)

) ≤
∑

i∈I

hi

(
f (xi) − f (x∗)

)
<

ε

2

∑

i∈[k]
hi − ε

∑

i∈J

hi + Θ2
0

= ε
∑

i∈I

hi − ε2

2

∑

i∈[k]

1

M2
i

+ Θ2
0 ≤ ε

∑

i∈I

hi , (8.11)

where in the last inequality, the stopping criterion is used. As long as the inequality
is strict, the case of the empty I is impossible. Thus, the point x̄k is correctly defined.
Dividing both parts of the inequality by

∑

i∈I

hi , we obtain the left inequality in (8.6).

For i ∈ I , it holds that g(xi) ≤ ε. Then, by the definition of x̄k and the convexity
of g,

g(x̄k) ≤
(
∑

i∈I

hi

)−1 ∑

i∈I

hig(xi) ≤ ε.

�
Let us now show that Algorithm 1 allows to reconstruct an approximate solution

to the problem, which is dual to (8.1). We consider a special type of problem (8.1)
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with g given by

g(x) = max
i∈{1,...,m}

{
gi(x)

}
. (8.12)

Then, the dual problem to (8.1) is

ϕ(λ) = min
x∈X

{
f (x) +

m∑

i=1

λigi(x)
}

→ max
λi≥0,i=1,...,m

ϕ(λ), (8.13)

where λi ≥ 0, i = 1, . . . ,m are Lagrange multipliers.
We slightly modify the assumption (8.8) and assume that the set X is bounded

and that we know a constant Θ0 > 0 such that

max
x∈X

d(x) ≤ Θ2
0 .

As before, denote [k] = {j ∈ {0, . . . , k − 1}}, J = [k] \ I . Let j ∈ J .
Then a subgradient of g(x) is used to make the j -th step of Algorithm 1. To find
this subgradient, it is natural to find an active constraint i ∈ 1, . . . ,m such that
g(xj ) = gi(x

j ) and use ∇g(xj ) = ∇gi(x
j ) to make a step. Denote i(j) ∈

1, . . . ,m the number of active constraint, whose subgradient is used to make a
non-productive step at iteration j ∈ J . In other words, g(xj ) = gi(j)(x

j ) and
∇g(xj ) = ∇gi(j)(x

j ). We define an approximate dual solution on a step k ≥ 0 as

λ̄k
i = 1

∑

j∈I

hj

∑

j∈J,i(j)=i

hj , i ∈ {1, . . . ,m}. (8.14)

and modify Algorithm 1 to return a pair (x̄k, λ̄k).

Theorem 2 Assume that the set X is bounded, the inequalities (8.5) and (8.7) hold
and a known constant Θ0 > 0 is such that d(x∗) ≤ Θ2

0 . Then, modified Algorithm 1
stops after not more than

k =
⌈
2max{M2

f ,M2
g }Θ2

0

ε2

⌉

iterations and the pair (x̄k, λ̄k) returned by this algorithm satisfies

f (x̄k) − ϕ(λ̄k) ≤ ε, g(x̄k) ≤ ε. (8.15)

Proof From Lemma 1 with Δ = 0, we have, for all j ∈ I and all u ∈ X,

hj

(
f (xj ) − f (u)

) ≤ h2j

2
‖∇f (xj )‖2E,∗ + V [xj ](u) − V [xj+1](u)
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and, for all j ∈ J and all u ∈ X,

hj

(
gi(j)(x

j ) − gi(j)(u)
) ≤ hj 〈∇gi(j)(x

j ), xj − u〉
= hj 〈∇g(xj ), xj − u〉

≤ h2j

2
‖∇g(xj )‖2E,∗ + V [xj ](u) − V [xj+1](u).

Summing up these inequalities for j from 0 to k − 1, using the definition of hj ,
j ∈ {0, . . . , k − 1}, we obtain, for all u ∈ X,

∑

j∈I

hj

(
f (xj ) − f (u)

) +
∑

j∈J

hj

(
gi(j)(x

j ) − gi(j)(u)
)

≤
∑

i∈I

h2jM
2
j

2
+

∑

j∈J

h2jM
2
j

2
+

∑

j∈[k]

(
V [xj ](u) − V [xj+1](u)

)

≤ ε

2

∑

j∈[k]
hj + Θ2

0 .

Since, for j ∈ J , gi(j)(x
j ) = g(xj ) > ε, by convexity of f and the definition of

x̄k, we have, for all u ∈ X,

⎛

⎝
∑

j∈I

hj

⎞

⎠
(
f (x̄k) − f (u)

) ≤
∑

j∈I

hj

(
f (xj ) − f (u)

)

≤ ε

2

∑

j∈[k]
hj + Θ2

0 −
∑

j∈J

hj

(
gi(j)(x

j ) − gi(j)(u)
)

<
ε

2

∑

j∈[k]
hi + Θ2

0 − ε
∑

j∈J

hi +
∑

j∈J

hj gi(j)(u)

= ε
∑

j∈I

hj − ε2

2

∑

j∈[k]

1

M2
j

+ Θ2
0 +

∑

j∈J

hj gi(j)(u)

≤ ε
∑

j∈I

hj +
∑

j∈J

hjgi(j)(u), (8.16)

where in the last inequality, the stopping criterion is used. At the same time, by
(8.14), for all u ∈ X,

∑

j∈J

hjgi(j)(u) =
m∑

i=1

∑

j∈J,i(j)=i

hjgi(j)(u) =
⎛

⎝
∑

j∈I

hj

⎞

⎠
m∑

i=1

λ̄k
i gi(u).
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This and (8.16) give, for all u ∈ X,

⎛

⎝
∑

j∈I

hj

⎞

⎠ f (x̄k) <

⎛

⎝
∑

j∈I

hj

⎞

⎠
(

f (u) + ε +
m∑

i=1

λ̄k
i gi(u)

)

.

Since the inequality is strict and holds for all u ∈ X, we have

(
∑

j∈I

hj

)

�= 0 and

f (x̄k) < ε + min
u∈X

{

f (u) +
m∑

i=1

λ̄k
i gi(u)

}

= ε + ϕ(λ̄k). (8.17)

Second inequality in (8.15) follows from Theorem 1. �

8.3.2 Strongly Convex Non-smooth Objective Function

In this subsection, we consider problem (8.1) with assumption (8.7) and additional
assumption of strong convexity of f and g with the same parameter μ, i.e.,

f (y) ≥ f (x) + 〈∇f (x), y − x〉 + μ

2
‖y − x‖2E, x, y ∈ X

and the same holds for g. For example, f (x) = x2 + |x| is a Lipschitz-continuous
and strongly convex function on X = [−1; 1] ⊂ R. We also slightly modify
assumptions on prox-function d(x). Namely, we assume that 0 = argminx∈X d(x)

and that d is bounded on the unit ball in the chosen norm ‖ · ‖E , that is

d(x) ≤ Ω

2
, ∀x ∈ X : ‖x‖E ≤ 1, (8.18)

where Ω is some known number. Finally, we assume that we are given a starting
point x0 ∈ X and a number R0 > 0 such that ‖x0 − x∗‖2E ≤ R2

0.
To construct a method for solving problem (8.1) under stated assumptions, we

use the idea of restarting Algorithm 1. The idea of restarting a method for convex
problems to obtain faster rate of convergence for strongly convex problems dates
back to 1980s, see [19, 20]. The algorithm is similar to the one in [2], but, for
the sake of consistency with other parts of the chapter, we use slightly different
proof. To show that restarting algorithm is also possible for problemswith inequality
constraints, we rely on the following lemma.
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Lemma 2 Let f and g be strongly convex functions with the same parameterμ and
x∗ be a solution of the problem (8.1). If, for some x̃ ∈ X,

f (x̃) − f (x∗) ≤ ε, g(x̃) ≤ ε,

then

μ

2
‖x̃ − x∗‖2E ≤ ε.

Proof Since problem (8.1) is regular, by necessary optimality condition [9] at the
point x∗, there exist λ0, λ ≥ 0 not equal to 0 simultaneously, and subgradients
∇f (x∗), ∇g(x∗), such that

〈λ0∇f (x∗) + λ∇g(x∗), x − x∗〉 ≥ 0, ∀x ∈ X, λg(x∗) = 0.

Since λ0 and λ are not equal to 0 simultaneously, three cases are possible.

1. λ0 = 0 and λ > 0. Then, by optimality conditions, g(x∗) = 0 and 〈λ∇g(x∗), x̃−
x∗〉 ≥ 0. Thus, by the Lemma assumption and strong convexity,

ε ≥ g(x̃) ≥ g(x∗) + 〈∇g(x∗), x̃ − x∗〉 + μ

2
‖x̃ − x∗‖2E ≥ μ

2
‖x̃ − x∗‖2E.

2. λ0 > 0 and λ = 0. Then, by optimality conditions, 〈λ0∇f (x∗), x̃ − x∗〉 ≥ 0.
Thus, by the Lemma assumption and strong convexity,

f (x∗)+ε ≥ f (x̃) ≥ f (x∗)+〈∇f (x∗), x̃ −x∗〉+ μ

2
‖x̃ −x∗‖2E ≥ f (x∗)+ μ

2
‖x̃ −x∗‖2E.

3. λ0 > 0, λ > 0. Then, by optimality conditions, g(x∗) = 0 and 〈λ0∇f (x∗) +
λ∇g(x∗), x̃ − x∗〉 ≥ 0. Thus, either 〈∇g(x∗), x̃ − x∗〉 ≥ 0 and the proof is the
same as in the item 1, or 〈∇f (x∗), x̃ − x∗〉 ≥ 0 and the proof is the same as in
the item 2. �

Theorem 3 Assume that inequalities (8.5) and (8.7) hold and f , g are strongly
convex with the same parameterμ. Also assume that the prox function d(x) satisfies
(8.18) and the starting point x0 ∈ X and a number R0 > 0 are such that ‖x0 −
x∗‖2E ≤ R2

0 . Then, the point xp returned by Algorithm 2 is an ε-solution to (8.1)
in the sense of (8.6) and ‖xp − x∗‖2E ≤ 2ε

μ
. At the same time, the total number of

iterations of Algorithm 1 does not exceed

⌈

log2
μR2

0

2ε

⌉

+ 32Ω max{M2
f ,M2

g }
με

. (8.19)

Proof Observe that, for all p ≥ 0, the function dp(x) defined in Algorithm 2 is 1-
strongly convex w.r.t. the norm ‖ · ‖E/Rp. The conjugate of this norm is Rp‖ · ‖E,∗.
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Algorithm 2 Adaptive mirror descent (non-smooth strongly convex objective)

Input: accuracy ε > 0; strong convexity parameter μ; Ω s.t. d(x) ≤ Ω
2 ∀x ∈ X : ‖x‖E ≤ 1;

starting point x0 and number R0 s.t. ‖x0 − x∗‖2E ≤ R2
0 .

1: Set d0(x) = d
(

x−x0
R0

)
.

2: Set p = 1.
3: repeat
4: Set R2

p = R2
0 · 2−p .

5: Set εp = μR2
p

2 .
6: Set xp as the output of Algorithm 1 with accuracy εp, prox-function dp−1(·) and Ω

2 as Θ2
0 .

7: dp(x) ← d
(

x−xp

Rp

)
.

8: Set p = p + 1.

9: until p > log2
μR2

0
2ε .

Output: xp .

This means that, at each step k of inner Algorithm 1,Mk changes to MkRp−1, where
p ≥ 1 is the number of outer iteration.

We show, by induction, that, for all p ≥ 0, ‖xp − x∗‖2E ≤ R2
p. For p = 0 it holds

by the assumption on x0 and R0. Let us assume that this inequality holds for some
p and show that it holds for p + 1. By (8.18), we have dp(x∗) ≤ Ω

2 . Thus, on the
outer iteration p + 1, by Theorem 1 and (8.6), after at most

kp+1 =
⌈

Ω max{M2
f ,M2

g }R2
p

ε2p+1

⌉

(8.20)

inner iterations, xp+1 = x̄kp+1 satisfies

f (xp+1) − f (x∗) ≤ εp+1, g(xp+1) ≤ εp+1,

where εp+1 = μR2
p+1
2 . Then, by Lemma 2,

‖xp+1 − x∗‖2E ≤ 2εp+1

μ
= R2

p+1.

Thus, we proved that, for all p ≥ 0, ‖xp − x∗‖2E ≤ R2
p = R2

0 · 2−p. At the same
time, we have, for all p ≥ 1,

f (xp) − f (x∗) ≤ μR2
0

2
· 2−p, g(xp) ≤ μR2

0

2
· 2−p.
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Thus, if p > log2
μR2

0
2ε , xp is an ε-solution to (8.1) in the sense of (8.6) and

‖xp − x∗‖2E ≤ R2
0 · 2−p ≤ 2ε

μ
.

Let us now estimate the total number N of inner iterations, i.e., the iterations of

Algorithm 1. Let us denote p̂ =
⌈
log2

μR2
0

2ε

⌉
. According to (8.20), we have

N =
p̂∑

p=1

kp ≤
p̂∑

p=1

(

1 + Ω max{M2
f ,M2

g }R2
p

ε2p+1

)

=
p̂∑

p=1

(

1 + 16Ω max{M2
f ,M2

g }2p

μ2R2
0

)

≤ p̂ + 32Ω max{M2
f ,M2

g }2p̂

μ2R2
0

≤ p̂ + 32Ω max{M2
f ,M2

g }
με

.

�
Similarly to Sect. 8.3.1, let us consider a special type of problem (8.1) with

strongly convex g given by

g(x) = max
i∈{1,...,m}

{
gi(x)

}
. (8.21)

and corresponding dual problem

ϕ(λ) = min
x∈X

{
f (x) +

m∑

i=1

λigi(x)
}

→ max
λi≥0,i∈{1,...,m} ϕ(λ).

On each outer iteration p of Algorithm 2, there is the last inner iteration kp of
Algorithm 1.We define approximate dual solution as λp = λ̄kp , where λ̄kp is defined
in (8.14). We modify Algorithm 2 to return a pair (xp, λp).

Combining Theorems 2 and 3, we obtain the following result.

Theorem 4 Assume that g is given by (8.21), inequalities (8.5) and (8.7) hold and
f , g are strongly convex with the same parameter μ. Also assume that the prox
function d(x) satisfies (8.18) and the starting point x0 ∈ X and a number R0 > 0
are such that ‖x0 − x∗‖2E ≤ R2

0 . Then, the pair (xp, λp) returned by Algorithm 2
satisfies

f (xp) − ϕ(λp) ≤ ε, g(xp) ≤ ε.
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and ‖xp − x∗‖2E ≤ 2ε
μ
. At the same time, the total number of inner iterations of

Algorithm 1 does not exceed

⌈

log2
μR2

0

2ε

⌉

+ 32Ω max{M2
f ,M2

g }
με

.

8.3.3 General Convex Objective Function

In this subsection, we assume that the objective function f in (8.1) might not satisfy
(8.7) and, hence, its subgradients could be unbounded. One of the examples is a
quadratic function. We also assume that inequality (8.8) holds.

We further develop ideas in [21, 24] and adapt them for problem (8.1), in a
way that our algorithm allows to use non-Euclidean proximal setup, as does Mirror
Descent, and does not require to know the constant Mg . Following [21], given a
function f for each subgradient ∇f (x) at a point y ∈ X, we define

vf [y](x) =

⎧
⎪⎨

⎪⎩

〈 ∇f (x)

‖∇f (x)‖E,∗
, x − y

〉
, ∇f (x) �= 0

0 ∇f (x) = 0

, x ∈ X. (8.22)

The following result gives complexity estimate for Algorithm 3 in terms of
vf [x∗](x). Below we use this theorem to establish complexity result for smooth
objective f .

Theorem 5 Assume that inequality (8.5) holds and a known constant Θ0 > 0 is
such that d(x∗) ≤ Θ2

0 . Then, Algorithm 3 stops after not more than

k =
⌈
2max{1,M2

g}Θ2
0

ε2

⌉

(8.23)

iterations and it holds thatmini∈I vf [x∗](xi) ≤ ε and g(x̄k) ≤ ε.

Proof First, let us prove that the inequality in the stopping criterion holds for k

defined in (8.23). Denote [k] = {i ∈ {0, . . . , k − 1}}, J = [k] \ I . By (8.5), we have
that, for any j ∈ J , ‖∇g(xj )‖E,∗ ≤ Mg. Hence, since |I | + |J | = k, by (8.23), we
obtain

|I | +
∑

j∈J

1

‖∇g(xj )‖2E,∗
≥ |I | + |J |

M2
g

≥ k

max{1,M2
g} ≥ 2Θ2

0

ε2
.
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Algorithm 3 Adaptive mirror descent (general convex objective)

Input: accuracy ε > 0; Θ0 s.t. d(x∗) ≤ Θ2
0 .

1: x0 = argmin
x∈X

d(x).

2: Initialize the set I as empty set.
3: Set k = 0.
4: repeat
5: if g(xk) ≤ ε then
6: hk = ε

‖∇f (xk)‖E,∗
7: xk+1 = Mirr[xk ](hk∇f (xk)) (“productive step”)
8: Add k to I .
9: else
10: hk = ε

‖∇g(xk)‖2E,∗
11: xk+1 = Mirr[xk ](hk∇g(xk)) (“non-productive step”)
12: end if
13: Set k = k + 1.

14: until |I | + ∑

j∈J

1
‖∇g(xj )‖2

E,∗
≥ 2Θ2

0
ε2

Output: x̄k := argminxj ,j∈I f (xj )

From Lemma 1 with u = x∗ and Δ = 0, by the definition of hi , i ∈ I , we have,
for all i ∈ I ,

εvf [x∗](xi) = ε

〈 ∇f (xi)

‖∇f (xi)‖E,∗
, xi − x∗

〉
= hi〈∇f (xi), xi − x∗〉

≤ h2i

2
‖∇f (xi)‖2E,∗ + V [xi](x∗) − V [xi+1](x∗)

= ε2

2
+ V [xi](x∗) − V [xi+1](x∗). (8.24)

Similarly, by the definition of hi , i ∈ J , we have, for all i ∈ J ,

ε(g(xi ) − g(x∗))

‖∇g(xi )‖2
E,∗

= hi

(
g(xi ) − g(x∗)

) ≤ h2i
2

‖∇g(xi )‖2E,∗ + V [xi ](x∗) − V [xi+1](x∗)

= ε2

2‖∇g(xi )‖2
E,∗

+ V [xi ](x∗) − V [xi+1](x∗).

Whence, using that, for all i ∈ J , g(xi) − g(x∗) ≥ g(xi) > ε, we have

− ε2

2‖∇g(xi)‖2E,∗
+ V [xi](x∗) − V [xi+1](x∗) > 0. (8.25)
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Summing up inequalities (8.24) for i ∈ I and applying (8.25) for i ∈ J , we obtain

ε|I |min
i∈I

vf [x∗](xi) ≤ ε
∑

i∈I

vf [x∗](xi) <
ε2

2
· |I | + Θ2

0 −
∑

i∈J

ε2

2‖∇g(xi)‖2E,∗
,

where we also used that, by definition of x0 and (8.8),

V [x0](x∗) = d(x∗) − d(x0) − 〈∇d(x0), x∗ − x0〉 ≤ d(x∗) ≤ Θ2
0 .

If the stopping criterion in Algorithm 3 is fulfilled, we get

ε|I |min
i∈I

vf [x∗](xi) < ε2|I |.

Since the inequality is strict, the set I is not empty and the output point x̄k is
correctly defined. Dividing both sides of the last inequality by ε|I |, we obtain the
first statement of the Theorem. By definition of x̄k, it is obvious that g(x̄k) ≤ ε. �

To obtain the complexity of our algorithm in terms of the values of the objective
function f , we define non-decreasing function

ω(τ) =
⎧
⎨

⎩

max
x∈X

{f (x) − f (x∗) : ‖x − x∗‖E ≤ τ } τ ≥ 0,

0 τ < 0.
(8.26)

and use the following lemma from [21].

Lemma 3 Assume that f is a convex function. Then, for any x ∈ X,

f (x) − f (x∗) � ω(vf [x∗](x)). (8.27)

Corollary 1 Assume that the objective function f in (8.1) is defined as f (x) =
maxi∈{1,...,m} fi(x), where fi , i = 1, . . . ,m are differentiable with Lipschitz-
continuous gradient

‖∇fi(x) − ∇fi(y)‖E,∗ ≤ Li‖x − y‖E ∀x, y ∈ X, i ∈ {1, . . . ,m}. (8.28)

Then x̄k is ε̃-solution to (8.1) in the sense of (8.6), where

ε̃ = max{ε, ε max
i=1,...,m

‖∇fi(x∗)‖E,∗ + ε2 max
i=1,...,m

Li/2}.

Proof As it was shown in Theorem 5, g(x̄k) ≤ ε. It follows from (8.28) that

fi(x) ≤ fi(x∗) + 〈∇fi(x∗), x − x∗〉 + 1

2
Li ||x − x∗||2E

≤ fi(x∗) + ‖∇fi(x∗)‖E,∗‖x − x∗‖E + 1

2
Li ||x − x∗||2E, i = 1, . . . ,m.
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Whence, ω(τ) ≤ τ maxi=1,...,m ‖∇fi(x∗)‖E,∗ + τ 2 maxi=1,...,m Li

2 . By Lemma 3, non-
decreasing property of ω and Theorem 5, we obtain

f (x̄k) − f (x∗) = min
i∈I

f (xi) − f (x∗) ≤ min
i∈I

ω(vf [x∗](xi))

≤ ω(min
i∈I

vf [x∗](xi)) ≤ ω(ε)

≤ ε max
i=1,...,m

‖∇fi(x∗)‖E,∗ + ε2 maxi=1,...,m Li

2
.

�

8.4 Randomization for Constrained Problems

In this section, we consider randomized version of problem (8.1). This means that
we still can use the value of the function g(x) in an algorithm, but, instead of
subgradients of f and g, we use their stochastic approximations. We combine the
idea of switching subgradient method [25] and Stochastic Mirror Descent method
introduced in [16]. More general case of stochastic optimization problems with
expectation constraints is studied in [14]. We consider convex problems as long as
strongly convex and, for each case, we have two types of algorithms. The first one
allows to control expectation of the objective residual f (x̃) − f (x∗) and inequality
infeasibility g(x̃), where x̃ is the output of the algorithm. The second one allows to
control probability of large deviation for these two quantities.

We introduce the following new assumptions. Given a point x ∈ X, we
can calculate stochastic subgradients ∇f (x, ξ),∇g(x, ζ ), where ξ, ζ are random
vectors. These stochastic subgradients satisfy

E
[∇f (x, ξ)

] = ∇f (x) ∈ ∂f (x), E
[∇g(x, ζ )

] = ∇g(x) ∈ ∂g(x), (8.29)

and

‖∇f (x, ξ)‖E,∗ ≤ Mf , ‖∇g(x, ζ )‖E,∗ ≤ Mg, a.s. in ξ, ζ. (8.30)

To motivate these assumptions, we consider the following example.

Example 1 ([3]) Consider Problem (8.1) with

f (x) = 1

2
〈Ax, x〉,
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where A is given n × n matrix, X = S(1) being standard unit simplex, i.e.,
X = {x ∈ R

n+ : ∑n
i=1 xi = 1}, and

g(x) = max
i∈{1,...,m}

{〈ci , x〉},

where
{
ci

}m

i=1 are given vectors in R
n.

Even if the matrixA is sparse, the gradient∇f (x) = Ax is usually not. The exact
computation of the gradient takes O(n2) arithmetic operations, which is expensive
when n is large. In this setting, it is natural to use randomization to construct a
stochastic approximation for ∇f (x). Let ξ be a random variable taking its values
in {1, . . . , n} with probabilities (x1, . . . , xn) respectively. Let A〈i〉 denote the i-th
column of the matrix A. Since x ∈ Sn(1),

E
[
A〈ξ 〉] = A〈1〉

P
(
ξ = 1

)

︸ ︷︷ ︸
x1

+ · · · + A〈n〉
P
(
ξ = n

)

︸ ︷︷ ︸
xn

= A〈1〉x1 + · · · + A〈n〉xn = Ax.

Thus, we can use A〈ξ 〉 as stochastic subgradient, which can be calculated in O(n)

arithmetic operations.

8.4.1 Convex Objective Function, Control of Expectation

In this subsection, we consider convex optimization problem (8.1) in randomized
setting described above. In this setting the output of the algorithm is random. Thus,
we need to change the notion of approximate solution. Let x∗ be a solution to (8.1).
We say that a (random) point x̃ ∈ X is an expected ε-solution to (8.1) if

Ef (x̃) − f (x∗) ≤ ε, and g(x̃) ≤ ε a.s. (8.31)

We also introduce a stronger assumption than (8.8). Namely, we assume that we
know a constant Θ0 > 0 such that

sup
x,y∈X

V [x](y) ≤ Θ2
0 . (8.32)

The main difference between the method, which we describe below, and the method
in [14] is the adaptivity of our method both in terms of stepsize and stopping rule,
which means that we do not need to know the constants Mf ,Mg in advance. We
assume that on each iteration of the algorithm independent realizations of ξ and
ζ are generated. The algorithm is similar to the one in [3], but, for the sake of
consistency with other parts of the chapter, we use slightly different proof.
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Algorithm 4 Adaptive stochastic mirror descent

Input: accuracy ε > 0; Θ0 s.t. V [x](y) ≤ Θ2
0 , ∀x, y ∈ X.

1: x0 = argmin
x∈X

d(x).

2: Initialize the set I as empty set.
3: Set k = 0.
4: repeat
5: if g(xk) ≤ ε. then
6: Mk = ‖∇f (xk, ξk)‖E,∗.

7: hk = Θ0

( k∑

i=0
M2

i

)−1/2
.

8: xk+1 = Mirr[xk ](hk∇f (xk, ξk)) (“productive step”).
9: Add k to I .
10: else
11: Mk = ‖∇g(xk, ζ k)‖E,∗.

12: hk = Θ0

( k∑

i=0
M2

i

)−1/2
.

13: xk+1 = Mirr[xk ](hk∇g(xk, ζ k)) (“non-productive step”).
14: end if
15: Set k = k + 1.

16: until k ≥ 2Θ0
ε

( k−1∑

i=0
M2

i

)1/2
.

Output: x̄k = 1
|I |

∑

k∈I

xk .

Theorem 6 Let equalities (8.29) and inequalities (8.30) hold. Assume that a known
constant Θ0 > 0 is such that V [x](y) ≤ Θ2

0 , ∀x, y ∈ X. Then, Algorithm 4 stops
after not more than

k =
⌈
4max{M2

f ,M2
g }Θ2

0

ε2

⌉

(8.33)

iterations and x̄k is an expected ε-solution to (8.1) in the sense of (8.31).

Proof First, let us prove that the inequality in the stopping criterion holds for k

defined in (8.33). By (8.30), we have that, for any i ∈ {0, . . . , k − 1}, Mi ≤
max{Mf ,Mg}. Hence, by (8.33), 2Θ0

ε

(
k−1∑

j=0
M2

j

)1/2

≤ 2Θ0
ε

max{Mf ,Mg}√k ≤ k.

Denote [k] = {i ∈ {0, . . . , k − 1}}, J = [k] \ I and

δi =
{〈∇f (xi, ξ i ) − ∇f (xi), x∗ − xi〉, if i ∈ I,

〈∇g(xi , ζ i) − ∇g(xi), x∗ − xi〉, if i ∈ J.
(8.34)
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From Lemma 1 with u = x∗ and Δ = ∇f (xi, ξ i ) − ∇f (xi), we have, for all i ∈ I ,

hi

(
f (xi) − f (x∗)

) ≤ h2i

2
‖∇f (xi, ξ i )‖2E,∗ + V [xi](x∗) − V [xi+1](x∗) + hiδi

and, from Lemma 1 with u = x∗ and Δ = ∇g(xi, ζ i) − ∇g(xi), for all i ∈ J ,

hi

(
g(xi) − g(x∗)

) ≤ h2i

2
‖∇g(xi , ζ i)‖2E,∗ + V [xi](x∗) − V [xi+1](x∗) + hiδi .

Dividing each inequality by hi and summing up these inequalities for i from 0 to
k − 1, using the definition of hi , i ∈ {0, . . . , k − 1}, we obtain

∑

i∈I

(
f (xi) − f (x∗)

) +
∑

i∈J

(
g(xi) − g(x∗)

)

≤
∑

i∈[k]

hiM
2
i

2
+

∑

i∈[k]

1

hi

(
V [xi](x∗) − V [xi+1](x∗)

) +
∑

i∈[k]
δi (8.35)

Using (8.32), we get

k−1∑

i=0

1

hi

(
V [xi](x∗) − V [xi+1](x∗)

)

= 1

h0
V [x0](x∗) +

k−2∑

i=0

( 1

hi+1
− 1

hi

)
V [xi+1](x∗) − 1

hk−1
V [xk](x∗)

≤ Θ2
0

h0
+ Θ2

0

k−2∑

k=0

( 1

hi+1
− 1

hi

)
= Θ2

0

hk−1
.

Whence, by the definition of stepsizes hi ,

∑

i∈I

(
f (xi) − f (x∗)

) +
∑

i∈J

(
g(xi) − g(x∗)

) ≤
∑

i∈[k]

hiM
2
i

2
+ Θ2

0

hk−1
+

∑

i∈[k]
δi

≤
k−1∑

i=0

Θ0

2

M2
i(∑i

j=0 M2
j

)1/2 + Θ0

(
k−1∑

i=0

M2
i

)1/2

+
∑

i∈[k]
δi

≤ 2Θ0

(
k−1∑

i=0

M2
i

)1/2

+
∑

i∈[k]
δi,
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where we used inequality
k−1∑

i=0

M2
i(∑i

j=0 M2
j

)1/2 ≤ 2
(∑k−1

i=0 M2
i

)1/2
, which can be

proved by induction. Since, for i ∈ J , g(xi) − g(x∗) ≥ g(xi) > ε, by convexity of
f , the definition of x̄k , and the stopping criterion, we get

|I |(f (x̄k) − f (x∗)
)

< ε|I | − εk + 2Θ0

( k−1∑

i=0

M2
i

)1/2 +
k−1∑

i=0

δi ≤ ε|I | +
k−1∑

i=0

δi .

(8.36)

Taking the expectation and using (8.29), as long as the inequality is strict and the
case of I = ∅ is impossible, we obtain

Ef (x̄k) − f (x∗) ≤ ε. (8.37)

At the same time, for i ∈ I it holds that g(xi) ≤ ε. Then, by the definition of x̄k and
the convexity of g,

g(x̄k) ≤ 1

|I |
∑

i∈I

g(xi) ≤ ε.

�

8.4.2 Convex Objective Function, Control of Large Deviation

In this subsection, we consider the same setting as in previous subsection, but
change the notion of approximate solution. Let x∗ be a solution to (8.1). Given
ε > 0 and σ ∈ (0, 1), we say that a point x̃ ∈ X is an (ε, σ )-solution to (8.1) if

P {f (x̃) − f (x∗) ≤ ε, g(x̃) ≤ ε} ≥ 1 − σ. (8.38)

As in the previous subsection, we use an assumption expressed by inequality
(8.32). We assume additionally to (8.30) that inequalities (8.5) and (8.7) hold.
Unfortunately, it is not clear, how to obtain large deviation guarantee for an adaptive
method. Thus, in this section, we assume that the constants Mf , Mg are known
and use a simplified algorithm. We assume that on each iteration of the algorithm
independent realizations of ξ and ζ are generated.

To analyze Algorithm 5 in terms of large deviation bound, we need the following
known result, see, e.g., [10].

Lemma 4 (Azuma-Hoeffding Inequality) Let η1, . . . , ηn be a sequence of inde-
pendent random variables taking their values in some set Ξ , and let Z =
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Algorithm 5 Stochastic mirror descent
Input: accuracy ε > 0; maximum number of iterations N ; Mf , Mg s.t. (8.5), (8.7), (8.30) hold.
1: x0 = argmin

x∈X
d(x).

2: Set h = ε

max{M2
f
,M2

g } .
3: Set k = 0.
4: repeat
5: if g(xk) ≤ ε. then
6: xk+1 = Mirr[xk ](h∇f (xk, ξk)) (“productive step”).
7: Add k to I .
8: else
9: xk+1 = Mirr[xk ](h∇g(xk , ζ k)) (“non-productive step”).
10: end if
11: Set k = k + 1.
12: until k ≥ N .
Output: If I �= ∅, then x̄k = 1

|I |
∑

k∈I

xk . Otherwise x̄k = NULL.

φ(η1, . . . , ηn) for some function φ : Ξn → R. Suppose that a. s.

∣
∣E[Z|η1, . . . , ηi] − E[Z|η1, . . . , ηi−1]∣∣ ≤ ci, i = 1, . . . , n,

where ci , i ∈ {1, . . . , n} are deterministic. Then, for each t ≥ 0

P
(
Z − EZ ≥ t

) ≤ exp

{
− t2

2
n∑

i=1
c2i

}
.

Theorem 7 Let equalities (8.29) and inequalities (8.5), (8.7), (8.30) hold. Assume
that a known constant Θ0 > 0 is such that V [x](y) ≤ Θ2

0 , ∀x, y ∈ X, and the
confidence level satisfies σ ∈ (0, 0.5). Then, if in Algorithm 5

N =
⌈
70

max{M2
f ,M2

g }Θ2
0

ε2
ln

1

σ

⌉
, (8.39)

x̄k is an (ε, σ )-solution to (8.1) in the sense of (8.38).

Proof Let us denote M = max{Mf ,Mg}. In the same way as we obtained (8.35) in
the proof of Theorem 6, we obtain

h
∑

i∈I

(
f (xi) − f (x∗)

) + h
∑

i∈J

(
g(xi) − g(x∗)

)

≤ h2M2k

2
+ V [x0](x∗) + h

k−1∑

i=0

δi,
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where δi , i = 0, . . . , k − 1 are defined in (8.34). Since, for i ∈ J , g(xi) − g(x∗) ≥
g(xi) > ε, by convexity of f , the definition of x̄k and h, we get

h|I |(f (x̄k) − f (x∗)
)

< εh|I | − ε2k

2M2 + Θ2
0 + h

k−1∑

i=0

δi . (8.40)

Using Cauchy-Schwarz inequality, (8.5), (8.7), (8.30), (8.32), we have

h
∣
∣δi

∣
∣ ≤ 2hM‖xi − x∗‖

≤ 2hM
√
2V [xi](x∗) ≤ 2

√
2hMΘ0 = 2

√
2
εΘ0

M
.

Now we use Lemma 4 with Z =
k−1∑

i=0
hδi . Clearly, EZ = E

[ k−1∑

i=0
hδi

]
= 0 and we

can take ci = 2
√
2 εΘ0

M
. Then, by Lemma 4, for each t ≥ 0,

P

{
k−1∑

i=0

hδi ≥ t

}

≤ exp

⎛

⎜⎜
⎜
⎝

− t2

2
k−1∑

i=0
c2i

⎞

⎟⎟
⎟
⎠

= exp

(

− t2M2

16ε2Θ2
0k

)

.

In other words, for each σ ∈ (0, 1)

P

{
k−1∑

i=0

hδi ≥ 4εΘ0

M

√

k ln
( 1

σ

)
}

≤ σ.

Applying this inequality to (8.40), we obtain, for any σ ∈ (0, 1),

P

{

h|I |(f (x̄k) − f (x∗)
)

< εh|I | − ε2k

2M2 + Θ2
0 + 4εΘ0

M

√

k ln
( 1

σ

)
}

≥ 1 − σ.

Then, by (8.39), we have

− ε2k

2M2 + Θ2
0 + 4εΘ0

M

√

k ln
( 1

σ

)
< Θ2

0

(
−71

2
ln

( 1

σ

)
+ 1 + 4 ln

( 1

σ

)√
71

)

< Θ2
0

(
−3

2
ln

( 1

σ

)
+ 1

)
. (8.41)
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Since σ ≤ 0.5 < exp(−2/3), we have − 3
2 ln

(
1
σ

)
+ 1 < 0 and

P

{
h|I |(f (x̄k) − f (x∗)

)
< h|I |ε

}
≥ 1 − σ.

Thus, with probability at least 1 − σ , the inequality is strict, the case of I = ∅ is
impossible, and x̄k is correctly defined. Dividing the both sides of it by h · |I |, we
obtain that P

{
f (x̄k) − f (x∗) ≤ ε

} ≥ 1 − σ . At the same time, for i ∈ I it holds
that g(xi) ≤ ε. Then, by the definition of x̄k and the convexity of g, again with
probability at least 1 − σ

g(x̄k) ≤ 1

|I |
∑

i∈I

g(xi) ≤ ε.

Thus, x̄k is an (ε, σ )-solution to (8.1) in the sense of (8.38). �

8.4.3 Strongly Convex Objective Function, Control of
Expectation

In this subsection, we consider the setting of Sect. 8.4.1, but, as in Sect. 8.3.2,
make the following additional assumptions. First, we assume that functions f

and g are strongly convex. Second, without loss of generality, we assume that
0 = argminx∈X d(x). Third, we assume that we are given a starting point x0 ∈ X

and a number R0 > 0 such that ‖x0 − x∗‖2E ≤ R2
0. Finally, we make the following

assumption (cf. (8.18)) that d is bounded in the following sense. Assume that x∗ is
some fixed point and x is a random point such that Ex

[‖x − x∗‖2E
] ≤ R2, then

Ex

[
d
(x − x∗

R

)]
≤ Ω

2
, (8.42)

where Ω is some known number and Ex denotes the expectation with respect to
random vector x. For example, this assumption holds for Euclidean proximal setup.
Unlike the method introduced in [14] for strongly convex problems, we present a
method, which is based on the restart of Algorithm 5. Unfortunately, it is not clear,
whether the restart technique can be combined with adaptivity to constantsMf ,Mg .
Thus, we assume that these constants are known.

The following lemma can be proved in the same way as Lemma 2.

Lemma 5 Let f and g be strongly convex functions with the same parameterμ and
x∗ be a solution of problem (8.1). Assume that, for some random x̃ ∈ X,

Ef (x̃) − f (x∗) ≤ ε, g(x̃) ≤ ε.
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Then

μ

2
E‖x̃ − x∗‖2E ≤ ε.

Theorem 8 Let equalities (8.29) and inequalities (8.30) hold and f , g be strongly
convex with the same parameterμ. Also assume that the prox function d(x) satisfies
(8.42) and the starting point x0 ∈ X and a number R0 > 0 are such that ‖x0 −
x∗‖2E ≤ R2

0 . Then, the point xp returned by Algorithm 6 is an expected ε-solution
to (8.1) in the sense of (8.31) and E‖xp − x∗‖2E ≤ 2ε

μ
. At the same time, the total

number of inner iterations of Algorithm 5 does not exceed

⌈

log2
μR2

0

2ε

⌉

+ 32Ω max{M2
f ,M2

g }
με

. (8.43)

Proof Let us denote M = max{Mf ,Mg}. Observe that, for all p ≥ 0, the function
dp(x) defined in Algorithm 6 is 1-strongly convex w.r.t. the norm ‖ · ‖E/Rp. The
conjugate of this norm is Rp‖ · ‖E,∗. This means that, at each outer iteration p, M

changes to MRp−1, where p is the number of outer iteration. We show by induction
that, for all p ≥ 0, E‖xp − x∗‖2E ≤ R2

p. For p = 0 it holds by the definition of x0
and R0.

Let us assume that this inequality holds for some p − 1 and show that it holds
for p. At iteration p, we start Algorithm 5 with starting point xp−1 and stepsize
hp = εp

M2R2
p−1

. Using the same steps as in the proof of Theorem 7, afterNp iterations

Algorithm 6 Stochastic mirror descent (strongly convex objective, expectation
control)

Input: accuracy ε > 0; strong convexity parameter μ; Ω s.t. Ex

[
d
(

x−x∗
R

)]
≤ Ω

2 if

1: Ex

[‖x − x∗‖2E
] ≤ R2; starting point x0 and number R0 s.t. ‖x0 − x∗‖2E ≤ R2

0 .

2: Set d0(x) = d
(

x−x0
R0

)
.

3: Set p = 1.
4: repeat
5: Set R2

p = R2
0 · 2−p .

6: Set εp = μR2
p

2 .

7: Set Np =
⌈
max{M2

f
,M2

g }ΩR2
p−1

ε2p

⌉

8: Set xp as the output of Algorithm 5 with accuracy εp , number of iterations Np , prox-
function dp−1(·) and Ω

2 as Θ2
0 .

9: dp(x) ← d
(

x−xp

Rp

)
.

10: Set p = p + 1.

11: until p > log2
μR2

0
2ε .

Output: xp .
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of Algorithm 5 (see (8.40)), we obtain

hp|Ip |(f (x̄k
p) − f (x∗)

)
< εphp|Ip | − ε2pNp

2M2R2
p−1

+ Vp−1[xp−1](x∗) + hp

Np−1∑

i=0

δi ,

(8.44)

where Vp−1[z](x) is the Bregman divergence corresponding to dp−1(x) and Ip is
the set of “productive steps”. Using the definition of dp−1, we have

Vp−1[xp−1](x∗) = dp−1(x∗) − dp−1(xp−1) − 〈∇dp−1(xp−1), x∗ − xp−1〉 ≤ dp−1(x∗).

Taking expectation with respect to xp−1 in (8.44) and using inductive assumption
E‖xp−1 − x∗‖2E ≤ R2

p−1 and (8.42), we obtain, substituting Np,

hp|Ip|(f (x̄k
p) − f (x∗)

)
< εphp|Ip| − ε2pNp

2M2R2
p−1

+ Ω

2
+ hp

Np−1∑

i=0

δi

≤ εphp|Ip| + hp

Np−1∑

i=0

δi . (8.45)

Taking the expectation and using (8.29), as long as the inequality is strict and the
case of Ip = ∅ is impossible, we obtain

Ef (x̄k
p) − f (x∗) ≤ εp. (8.46)

At the same time, for i ∈ Ip it holds that g(xi) ≤ εp. Then, by the definition of x̄k
p

and the convexity of g,

g(x̄k
p) ≤ 1

|Ip|
∑

i∈Ip

g(xi) ≤ εp.

Thus, we can apply Lemma 5 and obtain

E‖xp − x∗‖2E ≤ 2εp

μ
= R2

p.

Thus, we proved that, for all p ≥ 0, E‖xp − x∗‖2E ≤ R2
p = R2

0 · 2−p. At the same
time, we have, for all p ≥ 1,

Ef (xp) − f (x∗) ≤ μR2
0

2
· 2−p, g(xp) ≤ μR2

0

2
· 2−p.
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Thus, if p > log2
μR2

0
2ε , xp is an ε-solution to (8.1) in the sense of (8.31) and

E‖xp − x∗‖2E ≤ R2
0 · 2−p ≤ 2ε

μ
.

Let us now estimate the total number N of inner iterations, i.e., the iterations of

Algorithm 1. Let us denote p̂ =
⌈
log2

μR2
0

2ε

⌉
. We have

N =
p̂∑

p=1

Np ≤
p̂∑

p=1

(

1 + Ω max{M2
f ,M2

g }R2
p−1

ε2p

)

=
p̂∑

p=1

(

1 + 16Ω max{M2
f ,M2

g }2p

μ2R2
0

)

≤ p̂ + 32Ω max{M2
f ,M2

g }2p̂

μ2R2
0

≤ p̂ + 32Ω max{M2
f ,M2

g }
με

.

�

8.4.4 Strongly Convex Objective Function, Control of Large
Deviation

In this subsection, we consider the setting of Sect. 8.4.2, but make the following
additional assumptions. First, we assume that functions f and g are strongly convex.
Second, without loss of generality, we assume that 0 = argminx∈X d(x). Third, we
assume that we are given a starting point x0 ∈ X and a number R0 > 0 such that
‖x0−x∗‖2E ≤ R2

0. Finally, instead of (8.32), we assume that the Bregman divergence
satisfies quadratic growth condition

V [z](x) ≤ Ω

2
‖x − z‖2E, x, z ∈ X. (8.47)

where Ω is some known number. For example, this assumption holds for Euclidean
proximal setup. Unlike the method introduced in [14] for strongly convex problems,
we present a method, which is based on the restart of Algorithm 5. Unfortunately,
it is not clear, whether the restart technique can be combined with adaptivity to
constants Mf , Mg . Thus, we assume that these constants are known.

Theorem 9 Let equalities (8.29) and inequalities (8.5), (8.7), (8.30) hold. Let f ,
g be strongly convex with the same parameter μ. Also assume that the Bregman
divergence V [z](x) satisfies (8.47) and the starting point x0 ∈ X and a number
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R0 > 0 are such that ‖x0 − x∗‖2E ≤ R2
0 . Then, the point xp returned by Algorithm 7

is an (ε, σ )-solution to (8.1) in the sense of (8.38) and ‖xp − x∗‖2E ≤ 2ε
μ

with
probability at least 1 − σ . At the same time, the total number of inner iterations of
Algorithm 5 does not exceed

⌈

log2
μR2

0

2ε

⌉

+ 2240Ω max{M2
f ,M2

g }
με

(

ln
1

σ
+ ln log2

μR2
0

2ε

)

.

Proof Let us denote M = max{Mf ,Mg}. Observe that, for all p ≥ 0, the function
dp(x) defined in Algorithm 7 is 1-strongly convex w.r.t. the norm ‖ · ‖E/Rp. The
conjugate of this norm is Rp‖ · ‖E,∗. This means that, at each outer iteration p, M

changes to MRp−1, where p is the number of outer iteration.
LetAp, p ≥ 0 be the eventAp = {‖xp−x∗‖2E ≤ R2

p} and Āp be its complement.
Note that, by the definition of x0 and R0, A0 holds with probability 1. Denote p̂ =⌈
log2

μR2
0

2ε

⌉
.

We now show by induction that, for all p ≥ 1, P{Ap|Ap−1} ≥ 1 − σ
p̂
. By

inductive assumption, Ap−1 holds and we have ‖xp−1 − x∗‖2E ≤ R2
p−1. At iteration

p, we start Algorithm 5 with starting point xp−1, feasible set Xp and Bregman

Algorithm 7 Stochastic mirror descent (strongly convex objective, control of large
deviation)
Input: accuracy ε > 0; strong convexity parameter μ; Ω s.t. V [x](y) ≤ Ω

2 ‖x−y‖2E, x, y ∈ X;
starting point x0 and number R0 s.t. ‖x0 − x∗‖2E ≤ R2

0 .

1: Set d0(x) = d
(

x−x0
R0

)
.

2: Set p = 1.
3: repeat
4: Set R2

p = R2
0 · 2−p .

5: Set εp = μR2
p

2 .

6: Set Np =
⌈
70

max{M2
f
,M2

g }ΩR2
p−1

ε2p
ln

(
1
σ
log2

μR2
0

2ε

)⌉
.

7: Set Xp = {x ∈ X : ‖x − xp−1‖2E ≤ R2
p−1}.

8: Set xp as the output of Algorithm 5 with accuracy εp, number of iteration Np , prox-
function dp−1(·), Ω as Θ2

0 and Xp as the feasible set.

9: dp(x) ← d
(

x−xp

Rp

)
.

10: Set p = p + 1.

11: until p > log2
μR2

0
2ε .

Output: xp .
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divergence Vp−1[z](x) corresponding to dp−1(x). Thus, by (8.47), we have

max
x,z∈Xp

Vp−1[z](x) = max
x,z∈Xp

d

(
x − xp−1

Rp−1

)
− d

(
z − xp−1

Rp−1

)

−
〈
∇d

(
z − xp−1

Rp−1

)
,
x − xp−1

Rp−1
− z − xp−1

Rp−1

〉

= max
x,z∈Xp

V

[
z − xp−1

Rp−1

](
x − xp−1

Rp−1

)

≤ max
x,z∈Xp

Ω‖x − z‖2E
2R2

p−1

≤ Ω.

Hence, by Theorem 7 with σp = σ
p̂
, after Np iterations of Algorithm 5, we have

P
{
f (xp) − f (x∗) ≤ εp, g(xp) ≤ εp|Ap−1

} ≥ 1 − σ

p̂
.

Whence, by Lemma 2,

P
{
Ap|Ap−1

} = P

{
‖xp − x∗‖2E ≤ R2

p |Ap−1

}
≥ 1 − σ

p̂
,

which finishes the induction proof.
At the same time,

P
{
f (xp̂) − f (x∗) > εp̂ or g(xp̂) > εp̂

}

= P
{
f (xp̂) − f (x∗) > εp̂ or g(xp̂) > εp̂

∣∣Ap̂−1 ∪ Āp̂−1
}

= P
{
f (xp̂) − f (x∗) > εp̂ or g(xp̂) > εp̂

∣
∣Ap̂−1

}
P{Ap̂−1}

+ P
{
f (xp̂) − f (x∗) > εp̂ or g(xp̂) > εp̂

∣
∣ Āp̂−1

}
P{Āp̂−1}

≤ σ

p̂
+ P{Āp̂−1}

(∗)≤ σ

p̂
+ P

{
f (xp̂−1) − f (x∗) > εp̂−1 or g(xp̂−1) > εp̂−1

}

≤ 2 · σ

p̂
+ P{Āp̂−2} ≤ . . . ≤ p̂ − 1

p̂
· σ + P{Ā1}, (8.48)

where (∗) follows from Lemma 2. Using that P{A1} = P{A1|A0} ≥ 1 − σ
p̂
and,

hence, P{Ā1} ≤ σ
p̂
, we obtain

P
{
f (xp̂) − f (x∗) ≤ ε, g(xp̂) ≤ ε

} ≥ 1 − σ.
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Hence,

P

{
‖xp̂ − x∗‖2E ≤ 2ε

μ

}
≥ 1 − σ.

Let us now estimate the total number N of inner iterations, i.e., the iterations of
Algorithm 5. We have

N =
p̂∑

p=1

Np ≤
p̂∑

p=1

(

1 + 70
Ω max{M2

f ,M2
g}R2

p−1

ε2p
ln

(
1

σ
log2

μR2
0

2ε

))

=
p̂∑

p=1

(

1 + 1120
Ω max{M2

f ,M2
g }2p

μ2R2
0

ln

(
1

σ
log2

μR2
0

2ε

))

≤ p̂ + 2240
Ω max{M2

f ,M2
g }2p̂

μ2R2
0

ln

(
1

σ
log2

μR2
0

2ε

)

≤ p̂ + 2240
Ω max{M2

f ,M2
g }

με

(

ln
1

σ
+ ln log2

μR2
0

2ε

)

.

�

8.5 Discussion

We conclude with several remarks concerning possible extensions of the described
results.

Obtained results can be easily extended for composite optimization problems of
the form

min{f (x) + c(x) : x ∈ X ⊂ E, g(x) + c(x) ≤ 0}, (8.49)

where X is a convex closed subset of finite-dimensional real vector space E,
f : X → R, g : E → R, c : X → R are convex functions. Mirror Descent
for unconstrained composite problems was proposed in [11], see also [29] for
corresponding version of Dual Averaging [22]. To deal with composite problems
(8.49), the Mirror Descent step should be changed to

x+ = Mirr[x](p) = argmin
u∈X

{〈p, u〉 + d(u) + c(u) − 〈∇d(x), u〉} ∀x ∈ X0,

where X0 is defined in Sect. 8.2. The counterpart of Lemma 1 is as follows.
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Lemma 6 Let f be some convex function over a convex closed set X, h > 0 be a
stepsize, x ∈ X0. Let the point x+ be defined by x+ = Mirr[x](h · (∇f (x) + Δ)),
where Δ ∈ E∗. Then, for any u ∈ X,

h · (f (x) − f (u) + c(x+) − c(u) + 〈Δ, x − u〉)

≤ h · 〈∇f (x) + Δ, x − u〉 − h · 〈∇c(x+), u − x+〉

≤ h2

2
‖∇f (x) + Δ‖2E,∗ + V [x](u) − V [x+](u).

We considered restarting Mirror Descent only in the case of strongly convex
functions. A possible extension can be in applying the restart technique to the case
of uniformly convex functions f and g introduced in [26] and satisfying

f (y) ≥ f (x) + 〈∇f (x), y − x〉 + μ

2
‖y − x‖ρ

E, x, y ∈ X,

where ρ ≥ 2, and the same holds for g. Restarting Dual Averaging [22] to obtain
subgradient methods for minimizing such functions without functional constraints,
both in deterministic and stochastic setting, was suggested in [13]. Another option
is, as it was done in [27] for deterministic unconstrained problems, to use sharpness
condition of f and g

μ

(
min

x∗∈X∗
‖x − x∗‖E

)ρ

≤ f (x) − f∗, ∀x ∈ X,

where f∗ is the minimum value of f , X∗ is the set of minimizers of f in Problem
(8.1), and the same holds for g.

In stochastic setting, motivated by randomization for deterministic problems, we
considered only problems with available values of g. As it was done in [14], one can
consider more general problems of minimizing an expectation of a function under
inequality constraint given by EG(x, η) ≤ 0, where η is random vector. In this
setting one can deal only with stochastic approximation of this inequality constraint.
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